报告人华波波 (复旦大学)

报告时间:20211119日(周五) 09:00-11:00 

报告地点:腾讯会议ID881 678 262

摘要: Chow and Luo introduced the discrete Ricci flow on the triangulation of a surface, and proved the existence of the hyperbolic metric on higher genus surface via the discrete Ricci flow. As an introduction of the theory, we recall the techniques in Chow and Luo's paper, and prove the convergence of the discrete Calabi flow. This is joint work with Huabin Ge.

 

报告人简介:华波波,复旦大学教授、博士生导师,2010年博士毕业于复旦大学,曾入选国家高层次青年人才计划。主要研究领域是度量空间上的分析, 已在 Crelle’s Journal、Adv. Math.、 Math. Ann.、 Trans. Amer. Math. Soc.、 IMRN、 CVPDE、 CAG、 Math. Z. 等国际高水平数学期刊发表论文近50篇。

 

邀请人:王 奎